Phylogenomic insights into the diversity and evolution of Palearctic vipers

Mol Phylogenet Evol. 2024 May 9:197:108095. doi: 10.1016/j.ympev.2024.108095. Online ahead of print.

Abstract

Despite decades of molecular research, phylogenetic relationships in Palearctic vipers (genus Vipera) still essentially rely on a few loci, such as mitochondrial barcoding genes. Here we examined the diversity and evolution of Vipera with ddRAD-seq data from 33 representative species and subspecies. Phylogenomic analyses of ∼ 1.1 Mb recovered nine major clades corresponding to known species/species complexes which are generally consistent with the mitochondrial phylogeny, albeit with a few deep discrepancies that highlight past hybridization events. The most spectacular case is the Italian-endemic V. walser, which is grouped with the alpine genetic diversity of V. berus in the nuclear tree despite carrying a divergent mitogenome related to the Caucasian V. kaznakovi complex. Clustering analyses of SNPs suggest potential admixture between diverged Iberian taxa (V. aspis zinnikeri and V. seoanei), and confirm that the Anatolian V. pontica corresponds to occasional hybrids between V. (ammodytes) meridionalis and V. kaznakovi. Finally, all analyzed lineages of the V. berus complex (including V. walser and V. barani) form vast areas of admixture and may be delimited as subspecies. Our study sets grounds for future taxonomic and phylogeographic surveys on Palearctic vipers, a group of prime interest for toxinological, ecological, biogeographic and conservation research.

Keywords: Cyto-nuclear discordance; Hybridization; Phylogeography; Snakes; Speciation; Vipera; ddRAD-seq.