Unsteady hybrid nanofluid (Cu-UO2/blood) with chemical reaction and non-linear thermal radiation through convective boundaries: An application to bio-medicine

Heliyon. 2023 May 26;9(6):e16578. doi: 10.1016/j.heliyon.2023.e16578. eCollection 2023 Jun.

Abstract

This study is focused on modeling and simulations of hybrid nanofluid flow. Uranium dioxide UO2 nanoparticles are hybrid with copper Cu, copper oxide CuO and aluminum oxide Al2O3 while considering blood as a base fluid. The blood flow is initially modeled considering magnetic effect, non-linear thermal radiation and chemical reactions along with convective boundaries. Then for finding solution of the obtained highly nonlinear coupled system we propose a methodology in which q-homotopy analysis method is hybrid with Galerkin and least square Optimizers. Residual errors are also computed in this study to confirm the validity of results. Analysis reveals that rate of heat transfer in arteries increases up to 13.52 Percent with an increase in volume fraction of Cu while keeping volume fraction of UO2 fixed to 1% in a base fluid (blood). This observation is in excellent agreement with experimental result. Furthermore, comparative graphical study of Cu,CuO and Al2O3 for increasing volume fraction is also performed keeping UO2 volume fraction fixed. Investigation indicates that Cu has the highest rate of heat transfer in blood when compared with CuO and Al2O3. It is also observed that thermal radiation increases the heat transfer rate in the current study. Furthermore, chemical reaction decreases rate of mass transfer in hybrid blood nanoflow. This study will help medical practitioners to minimize the adverse effects of UO2 by introducing hybrid nano particles in blood based fluids.

Keywords: Blood flow; Chemical reaction; Convective boundary conditions; Hybrid nanofluid; Non-linear thermal radiation; Optimal q-homotopy analysis method.