Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI

Diagnostics (Basel). 2023 Mar 1;13(5):925. doi: 10.3390/diagnostics13050925.

Abstract

A brain tumor is an abnormal growth of tissues inside the skull that can interfere with the normal functioning of the neurological system and the body, and it is responsible for the deaths of many individuals every year. Magnetic Resonance Imaging (MRI) techniques are widely used for detection of brain cancers. Segmentation of brain MRI is a foundational process with numerous clinical applications in neurology, including quantitative analysis, operational planning, and functional imaging. The segmentation process classifies the pixel values of the image into different groups based on the intensity levels of the pixels and a selected threshold value. The quality of the medical image segmentation extensively depends on the method which selects the threshold values of the image for the segmentation process. The traditional multilevel thresholding methods are computationally expensive since these methods thoroughly search for the best threshold values to maximize the accuracy of the segmentation process. Metaheuristic optimization algorithms are widely used for solving such problems. However, these algorithms suffer from the problem of local optima stagnation and slow convergence speed. In this work, the original Bald Eagle Search (BES) algorithm problems are resolved in the proposed Dynamic Opposite Bald Eagle Search (DOBES) algorithm by employing Dynamic Opposition Learning (DOL) at the initial, as well as exploitation, phases. Using the DOBES algorithm, a hybrid multilevel thresholding image segmentation approach has been developed for MRI image segmentation. The hybrid approach is divided into two phases. In the first phase, the proposed DOBES optimization algorithm is used for the multilevel thresholding. After the selection of the thresholds for the image segmentation, the morphological operations have been utilized in the second phase to remove the unwanted area present in the segmented image. The performance efficiency of the proposed DOBES based multilevel thresholding algorithm with respect to BES has been verified using the five benchmark images. The proposed DOBES based multilevel thresholding algorithm attains higher Peak Signal-to-Noise ratio (PSNR) and Structured Similarity Index Measure (SSIM) value in comparison to the BES algorithm for the benchmark images. Additionally, the proposed hybrid multilevel thresholding segmentation approach has been compared with the existing segmentation algorithms to validate its significance. The results show that the proposed algorithm performs better for tumor segmentation in MRI images as the SSIM value attained using the proposed hybrid segmentation approach is nearer to 1 when compared with ground truth images.

Keywords: brain tumor; multilevel thresholding; optimization algorithm; segmentation.