Preparation of High-Purity Ammonium Tetrakis(pentafluorophenyl)borate for the Activation of Olefin Polymerization Catalysts

Molecules. 2021 May 10;26(9):2827. doi: 10.3390/molecules26092827.

Abstract

Homogeneous olefin polymerization catalysts are activated in situ with a co-catalyst ([PhN(Me)2-H]+[B(C6F5)4]- or [Ph3C]+[B(C6F5)4]-) in bulk polymerization media. These co-catalysts are insoluble in hydrocarbon solvents, requiring excess co-catalyst (>3 eq.). Feeding the activated species as a solution in an aliphatic hydrocarbon solvent may be advantageous over the in situ activation method. In this study, highly pure and soluble ammonium tetrakis(pentafluorophenyl)borates ([Me(C18H37)2N-H]+[B(C6F5)4]- and [(C18H37)2NH2]+[B(C6F5)4]-) containing neither water nor Cl- salt impurities were prepared easily via the acid-base reaction of [PhN(Me)2-H]+[B(C6F5)4]- and the corresponding amine. Using the prepared ammonium salts, the activation reactions of commercial-process-relevant metallocene (rac-[ethylenebis(tetrahydroindenyl)]Zr(Me)2 (1-ZrMe2), [Ph2C(Cp)(3,6-tBu2Flu)]Hf(Me)2 (3-HfMe2), [Ph2C(Cp)(2,7-tBu2Flu)]Hf(Me)2 (4-HfMe2)) and half-metallocene complexes ([(η5-Me4C5)Si(Me)2(κ-NtBu)]Ti(Me)2 (5-TiMe2), [(η5-Me4C5)(C9H9(κ-N))]Ti(Me)2 (6-TiMe2), and [(η5-Me3C7H1S)(C10H11(κ-N))]Ti(Me)2 (7-TiMe2)) were monitored in C6D12 with 1H NMR spectroscopy. Stable [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]- species were cleanly generated from 1-ZrMe2, 3-HfMe2, and 4-HfMe2, while the species types generated from 5-TiMe2, 6-TiMe2, and 7-TiMe2 were unstable for subsequent transformation to other species (presumably, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]--type species). [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]--type species were also prepared from 5-TiCl(Me) and 6-TiCl(Me), which were newly prepared in this study. The prepared [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]--, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]--, and [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]--type species, which are soluble and stable in aliphatic hydrocarbon solvents, were highly active in ethylene/1-octene copolymerization performed in aliphatic hydrocarbon solvents.

Keywords: activation reaction; ammonium tetrakis(pentafluorophenyl)borate; half-metallocene; metallocene; olefin polymerization.