Thermomechanical Behavior of Bone-Shaped SWCNT/Polyethylene Nanocomposites via Molecular Dynamics

Materials (Basel). 2021 Apr 24;14(9):2192. doi: 10.3390/ma14092192.

Abstract

In the present study, the thermomechanical effects of adding a newly proposed nanoparticle within a polymer matrix such as polyethylene are being investigated. The nanoparticle is formed by a typical single-walled carbon nanotube (SWCNT) and two equivalent giant carbon fullerenes that are attached with the nanotube edges through covalent bonds. In this way, a bone-shaped nanofiber is developed that may offer enhanced thermomechanical characteristics when used as a polymer filler, due to each unique shape and chemical nature. The investigation is based on molecular dynamics simulations of the tensile stress-strain response of polymer nanocomposites under a variety of temperatures. The thermomechanical behavior of the bone-shaped nanofiber-reinforced polyethylene is compared with that of an equivalent nanocomposite filled with ordinary capped single-walled carbon nanotubes, in order to reach some coherent fundamental conclusions. The study focuses on the evaluation of some basic, temperature-dependent properties of the nanocomposite reinforced with these innovative bone-shaped allotropes of carbon.

Keywords: bone-shaped; fullerene; nanocomposite; nanotube; polymer; stress-strain.