An integrated simulation framework for the prevention and mitigation of pandemics caused by airborne pathogens

Netw Model Anal Health Inform Bioinform. 2022;11(1):42. doi: 10.1007/s13721-022-00385-z. Epub 2022 Oct 18.

Abstract

In this work, we developed an integrated simulation framework for pandemic prevention and mitigation of pandemics caused by airborne pathogens, incorporating three sub-models, namely the spatial model, the mobility model, and the propagation model, to create a realistic simulation environment for the evaluation of the effectiveness of different countermeasures on the epidemic dynamics. The spatial model converts images of real cities obtained from Google Maps into undirected weighted graphs that capture the spatial arrangement of the streets utilized next for the mobility of individuals. The mobility model implements a stochastic agent-based approach, developed to assign specific routes to individuals moving in the city, through the use of stochastic processes, utilizing the weights of the underlying graph to deploy shortest path algorithms. The propagation model implements both the epidemiological model and the physical substance of the transmission of an airborne pathogen (in our approach, we investigate the transmission parameters of SARS-CoV-2). The deployment of a set of countermeasures was investigated in reducing the spread of the pathogen, where, through a series of repetitive simulation experiments, we evaluated the effectiveness of each countermeasure in pandemic prevention.

Keywords: Airborne pathogens; Algorithms; Epidemic control; Graph theory; Simulation.