Recognition and Processing of Visual Information after Neuronavigated Transcranial Magnetic Stimulation Session

Brain Sci. 2022 Sep 14;12(9):1241. doi: 10.3390/brainsci12091241.

Abstract

Background: Transcranial magnetic stimulation (TMS) is a method of noninvasive and painless stimulation of the nervous system, which is based on Faraday's law of electromagnetic induction. Over the past twenty years, the TMS technique has been deployed as a tool for the diagnosis and therapy of neurodegenerative diseases, as well as in the treatment of mental disorders (e.g., depression).

Methods: We tested the inhibitory effects of repetitive TMS (rTMS) on reaction times to militarily relevant visual stimuli amidst distractors and on accompanying blood oxygenation level dependent (BOLD) signal functional magnetic resonance imaging (fMRI) in 20 healthy people. rTMS was applied over the visual cortices, V1, on both hemispheres with the inhibitory theta burst paradigm with the intensity of 70% of the active motor threshold fMRI in 20 healthy people.

Results: Analysis of the reaction time to visual stimuli after using TMS to the V1 visual cortex revealed an increase in the number of incorrect recognitions, and the reaction time was from 843 to 910 ms. In the subgroup of participants (n = 15), after the stimulation, there were significant reductions of BOLD signal in blood flow within V1 cortices.

Conclusions: The studies of reaction times after the rTMS revealed the inhibitory effect of rTMS on the reaction times and recognition performance of significant (military) objects in the visual field.

Keywords: TMS; brain stimulation; fMRI.