Physicochemical Properties of Cellulose-Based Hydrogel for Biomedical Applications

Polymers (Basel). 2022 Nov 2;14(21):4669. doi: 10.3390/polym14214669.

Abstract

Hydrogels are three-dimensional network structures of hydrophilic polymers, which have the capacity to take up an enormous amount of fluid/water. Carboxymethyl cellulose (CMC) is a commercially available cellulose derivative that can be used for biomedical applications due to its biocompatibility. It has been used as a major component to fabricate hydrogels because of its superabsorbent nature. In this study, we developed carboxylic acid crosslinked carboxymethyl cellulose hydrogels for biomedical applications. The physicochemical, morphological, and thermal properties were analyzed to confirm the crosslinking of carboxymethyl cellulose. Fourier-transform infrared spectra confirmed the crosslinking of carboxymethyl cellulose with the presence of peaks due to an esterification reaction. The distinct peak at 1718 cm-1 in hydrogel samples is due to the carbonyl group vibrations of the ester bond from the crosslinking reaction. The total carboxyl content of the sample was measured with crosslinker immersion time. The swelling of crosslinked hydrogels showed an excellent swelling capacity for CG02 that is much higher than CG01 in water and PBS. Morphological analysis of the hydrogel showed it has a rough surface. The thermal degradation of hydrogel showed stability with respect to temperature. However, the mechanical analysis showed that CG01 has a higher compressive strength than CG01. The optimum swelling ratio and higher compressive strength of CG01 hydrogels could give them the ability to be used in load-bearing tissue regeneration. These results inferred that the carboxylic acid crosslinked CMC hydrogels could be a suitable matrix for biomedical or tissue-engineering applications with improved stability.

Keywords: biomedical; carboxymethyl cellulose; crosslinking; hydrogels; swelling; tissue engineering.