Efficiency comparison of extraction methods for the determination of 11 of the 16 USEPA priority polycyclic aromatic hydrocarbons in water matrices: Sources of origin and ecological risk assessment

Integr Environ Assess Manag. 2024 Feb 15. doi: 10.1002/ieam.4904. Online ahead of print.

Abstract

As a result of their toxicity, ease of analysis, and environmental occurrence, 16 polycyclic aromatic hydrocarbons (PAHs) were chosen as priority pollutants by the USEPA. Few studies have been conducted to assess the levels of PAHs in South Africa, especially KwaZulu Natal province, and no work has been done in the selected study area. Therefore, this study aimed to evaluate the levels of such PAHs in river water and wastewater samples and evaluate their source and ecological risk. The status of these PAHs in the South African environment has not been investigated fully, which is a gap this study intended to fill. The PAHs were determined using solid-phase extraction (SPE) and dispersive liquid-liquid microextraction (DLLME) methods. The optimization and validation of these methods indicated that both methods can be used for the extraction of PAHs in liquid samples. This is because of the acceptable %recovery of 72.1%-118% for SPE and 70.7%-88.4% for DLLME with a %RSD less than 10% (indicating high precision) that was obtained. The limit of detection and limit of quantification ranged from 5.0 to 18 ng/L and 6.0-20 ng/L for SPE and from 10 to 44 ng/L and 11 to 63 ng/L for DLLME. These results demonstrated that SPE is more accurate and sensitive than DLLME, which was also confirmed by statistical analysis. The PAH concentration levels ranged from not detected (nd) to 1046 ng/L in river water and nd to 778 ng/L in wastewater samples with naphthalene demonstrating dominance over all other PAHs in both water matrices. The PAHs were found to be of petrogenic origin and posed low ecological risk on average. Integr Environ Assess Manag 2024;00:1-13. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Keywords: Dispersive liquid-liquid microextraction; Environmental pollution; Polycyclic aromatic hydrocarbons; Solid-phase extraction; Wastewater.