Comparison of Metal-Based PZT and PMN-PT Energy Harvesters Fabricated by Aerosol Deposition Method

Sensors (Basel). 2021 Jul 12;21(14):4747. doi: 10.3390/s21144747.

Abstract

In this study, polycrystalline lead magnesium niobate-lead titanate (PMN-PT) was explored as an alternative piezoelectric material, with a higher power density for energy harvesting (EH), and comprehensively compared to the widely used polycrystalline lead zirconate titanate (PZT). First, the size distribution and piezoelectric properties of PZT and PMN-PT raw powders and ceramics were compared. Thereafter, both materials were deposited on stainless-steel substrates as 10 μm thick films using the aerosol deposition method. The films were processed as {3-1}-mode cantilever-type EH devices using microelectromechanical systems. The films with different annealing temperatures were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and dielectric behavior measurements. Furthermore, the mechanical and electrical properties of PMN-PT- and PZT-based devices were measured and compared. The PMN-PT-based devices showed a higher Young's modulus and lower damping ratio. Owing to their higher figure of merit and lower piezoelectric voltage constant, they showed a higher power and lower voltage than the PZT-based devices. Finally, when poly-PMN-PT material was the active layer, the output power was enhanced by 26% at the 0.5 g acceleration level. Thus, these devices exhibited promising properties, meeting the high current and low voltage requirements in integrated circuit designs.

Keywords: aerosol deposition; energy harvesting; lead magnesium niobate–lead titanate (PMN–PT); lead zirconate titanate (PZT).