MetaboVariation: Exploring Individual Variation in Metabolite Levels

Metabolites. 2023 Jan 23;13(2):164. doi: 10.3390/metabo13020164.

Abstract

To date, most metabolomics biomarker research has focused on identifying disease biomarkers. However, there is a need for biomarkers of early metabolic dysfunction to identify individuals who would benefit from lifestyle interventions. Concomitantly, there is a need to develop strategies to analyse metabolomics data at an individual level. We propose "MetaboVariation", a method that models repeated measurements on individuals to explore fluctuations in metabolite levels at an individual level. MetaboVariation employs a Bayesian generalised linear model to flag individuals with intra-individual variations in their metabolite levels across multiple measurements. MetaboVariation models repeated metabolite levels as a function of explanatory variables while accounting for intra-individual variation. The posterior predictive distribution of metabolite levels at the individual level is available, and is used to flag individuals with observed metabolite levels outside the 95% highest posterior density prediction interval at a given time point. MetaboVariation was applied to a dataset containing metabolite levels for 20 metabolites, measured once every four months, in 164 individuals. A total of 28% of individuals with intra-individual variations in three or more metabolites were flagged. An R package for MetaboVariation was developed with an embedded R Shiny web application. To summarize, MetaboVariation has made considerable progress in developing strategies for analysing metabolomics data at the individual level, thus paving the way toward personalised healthcare.

Keywords: Bayesian generalised linear model; intra-individual variation; metabolite levels; personalised healthcare.