Sparse fusion imaging for a moving target in T/R-R configuration

Sensors (Basel). 2014 Jun 17;14(6):10664-79. doi: 10.3390/s140610664.

Abstract

For high resolution imaging of a non-cooperative moving target, this paper proposes a sparse fusion imaging method. The imaging system contains two radar stations, which are separated by a certain bistatic angle and configured in a transmitter/receiver-receiver (T/R-R) manner. Consequently, two synthetic apertures are obtained at the same time from different aspect angles. By coherently fusing the echoes of the two radars, a virtual aperture spanned by these two sub-apertures can be constructed, which is larger than either of the sub-apertures; thus, the cross-range resolution of the image is enhanced. Moreover, the fusion of the echoes is realized by exploiting the sparse scattering property of the target. Then, based on the maximum a posteriori (MAP) criterion, the T/R-R fusion imaging problem is converted into a sparse signal recovery problem with unknown parameters. Finally, it is solved in an iterative manner, which contains two steps, i.e., sparse imaging and parameter estimation. Simulation results show that the proposed sparse fusion imaging method can improve the cross-range resolution significantly compared to inverse synthetic aperture radar (ISAR) within the same coherent processing interval (CPI).

Publication types

  • Research Support, Non-U.S. Gov't