Plasmonic Metal/Semiconductor Heterostructure for Visible Light-Enhanced H2 Production

ACS Omega. 2022 Jul 14;7(29):25466-25475. doi: 10.1021/acsomega.2c02459. eCollection 2022 Jul 26.

Abstract

A plasmonic Ag/Bi2WO6 heterostructure, having Ag NPs deposited on Bi2WO6, is obtained by a hydrothermal and photodeposition method. The synthesized Ag/Bi2WO6 composite exhibits strong visible light absorption with a localized surface plasmon resonance (LSPR) and shows an enhanced photoabsorption property. It is demonstrated that such a Ag/Bi2WO6 heterostructure shows excellent plasmon-enhanced photocatalytic activity in the dehydrogenation of ammonia borane (NH3BH3) solution under visible light irradiation, which is due to the results from the synergetic effect between Ag NPs and emerging W5+ ions. More importantly, the performance of a Ag/Bi2WO6 hybrid is almost eight times higher than that of sole Bi2WO6 nanosheets. The introduction of LSPR of Ag in Bi2WO6 improves the electrical conductivity of the composite and lowers the recombination rate of charge carriers. This study opens up the opportunity of rationally fabricating plasmonic metal/semiconductor heterostructures for highly efficient photocatalysis.