Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)

J Mech Behav Biomed Mater. 2010 Apr;3(3):249-59. doi: 10.1016/j.jmbbm.2009.10.006. Epub 2009 Oct 22.

Abstract

Patient specific porous implants for the reconstruction of craniofacial defects have gained importance due to their better performance over their generic counterparts. The recent introduction of electron beam melting (EBM) for the processing of titanium has led to a one step fabrication of porous custom titanium implants with controlled porosity to meet the requirements of the anatomy and functions at the region of implantation. This paper discusses an image based micro-structural analysis and the mechanical characterization of porous Ti6Al4V structures fabricated using the EBM rapid manufacturing process. SEM studies have indicated the complete melting of the powder material with no evidence of poor inter-layer bonding. Micro-CT scan analysis of the samples indicate well formed titanium struts and fully interconnected pores with porosities varying from 49.75%-70.32%. Compression tests of the samples showed effective stiffness values ranging from 0.57(+/-0.05)-2.92(+/-0.17)GPa and compressive strength values of 7.28(+/-0.93)-163.02(+/-11.98)MPa. For nearly the same porosity values of 49.75% and 50.75%, with a variation in only the strut thickness in the sample sets, the compressive stiffness and strength decreased significantly from 2.92 GPa to 0.57 GPa (80.5% reduction) and 163.02 MPa to 7.28 MPa (93.54 % reduction) respectively. The grain density of the fabricated Ti6Al4V structures was found to be 4.423 g/cm(3) equivalent to that of dense Ti6Al4V parts fabricated using conventional methods. In conclusion, from a mechanical strength viewpoint, we have found that the porous structures produced by the electron beam melting process present a promising rapid manufacturing process for the direct fabrication of customized titanium implants for enabling personalized medicine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys
  • Bone Substitutes / chemistry
  • Bone and Bones / physiology
  • Compressive Strength
  • Electrons*
  • Materials Testing / methods*
  • Microscopy, Electron, Scanning
  • Porosity
  • Prostheses and Implants
  • Surface Properties
  • Titanium / chemistry*
  • Weight-Bearing
  • X-Ray Microtomography

Substances

  • Alloys
  • Bone Substitutes
  • titanium alloy (TiAl6V4)
  • Titanium