Optimization of Bioactive Compound Extraction from Eggplant Peel by Response Surface Methodology: Ultrasound-Assisted Solvent Qualitative and Quantitative Effect

Foods. 2022 Oct 19;11(20):3263. doi: 10.3390/foods11203263.

Abstract

Anthocyanin pigments, which the peel of eggplant is rich in, contribute to food quality because of their function in color, appearance, and nutritional advantages. For the first time, this study aimed to optimize the composition of the extracting solvent as three factors: factor A (ratio of ethanol to methanol 0-100% v/v), factor B (ratio of water to alcohol 0-100% v/v), and factor C (citric acid in the final solvent 0-1% w/v) using response surface methodology (RSM), central composite design (CCD) with α 2, and two repeats in axial and factorial points and four central points, for maximum total phenolic content, total anthocyanin content, extraction yield, antioxidant activity in terms of DPPH radical scavenging activity and ferric reducing antioxidant power (FRAP) assay of the eggplant peel dry extract assisted by ultrasound (200 watts power, frequency of 28 kHz) in 60 °C for 45 min has been investigated. The best optimal formulas determined using RSM for the final solvent comprised optimal formula 1 (i.e., ethanol-to-methanol ratio 59% and water-to-alcohol ratio 0%, and citric acid in final solvent 0.47%), and optimal formula 2 (i.e., ethanol-to-methanol ratio 67% and water-to-alcohol ratio 0%, and citric acid in final solvent 0.56%). In general, an alcoholic-acidic extract of eggplant peel made with an ethanol-methanol solvent including citric acid can be used in the food industry as a natural source of antioxidants and pigment.

Keywords: antioxidant activity; delphinidin-3-glucoside; eggplant peel waste; solvent optimal formula; total phenol content; yield extract.

Grants and funding

This research received no external funding.