Synthesis, Structure, and Theoretical Calculations on NpO2Br42

Inorg Chem. 2023 Aug 28;62(34):13953-13963. doi: 10.1021/acs.inorgchem.3c01891. Epub 2023 Aug 16.

Abstract

The actinide-halogen complexes (AnO2X42-, X = Cl, Br, and I) are the simplest and most representative compounds for studying the bonding nature of actinides with ligands. In this work, we attempted to synthesize the crystals of NpO2X42- (X = Cl, Br, and I). The crystals of NpO2Cl42- and NpO2Br42- were successfully synthesized, in which the structure of NpO2Br42- was obtained for the first time. The crystal of NpO2I42- could not be obtained due to the rapid reduction of Np(VI) to Np(V) by I-. The molecular structures of NpO2Cl42- and NpO2Br42- were characterized by single-crystal X-ray diffraction and infrared, Raman, and UV-Vis-NIR absorption spectroscopy. The complexes of NpO2X42- (X = Cl, Br, and I) were also investigated by density functional theory calculations, and the calculated vibration frequencies and absorption features were comparable to the experimental results. Both the experimental results and theoretical calculations demonstrate the strengthened Np-O bonds and the weakened Np-X bonds across the NpO2X42- series; however, the population analysis on the frontier molecular orbitals (MOs) of NpO2X42- indicates a slight reduction in the Np-O bonding covalency and an enhancement in the Np-X bonding covalency from NpO2Cl42- to NpO2I42-. Results in this work have enriched the crystal database of the AnO2X42- family and provided insights into the bonding nature in the actinide complexes with soft- and hard-donor ligands.