A Label-Free Fluorescent DNA Machine for Sensitive Cyclic Amplification Detection of ATP

Materials (Basel). 2018 Nov 29;11(12):2408. doi: 10.3390/ma11122408.

Abstract

In this study, a target recycled amplification, background signal suppression, label-free fluorescent, enzyme-free deoxyribonucleic acid (DNA) machine was developed for the detection of adenosine triphosphate (ATP) in human urine. ATP and DNA fuel strands (FS) were found to trigger the operation of the DNA machine and lead to the cyclic multiplexing of ATP and the release of single stranded (SS) DNA. Double-stranded DNA (dsDNA) was formed on graphene oxide (GO) from the combination of SS DNA and complementary strands (CS'). These double strands then detached from the surface of the GO and in the process interacted with PicoGreen dye resulting in amplifying fluorescence intensity. The results revealed that the detection range of the DNA machine is from 100 to 600 nM (R² = 0.99108) with a limit of detection (LOD) of 127.9 pM. A DNA machine circuit and AND-NOT-AND-OR logic gates were successfully constructed, and the strategy was used to detect ATP in human urine. With the advantage of target recycling amplification and GO suppressing background signal without fluorescent label and enzyme, this developed strategy has great potential for sensitive detection of different proteins and small molecules.

Keywords: ATP detection; DNA machine; cyclic amplification; graphene oxide; label-free fluorescence; logic gate.