Dual spin max pooling convolutional neural network for solar cell crack detection

Sci Rep. 2023 Jul 9;13(1):11099. doi: 10.1038/s41598-023-38177-8.

Abstract

This paper presents a solar cell crack detection system for use in photovoltaic (PV) assembly units. The system utilizes four different Convolutional Neural Network (CNN) architectures with varying validation accuracy to detect cracks, microcracks, Potential Induced Degradations (PIDs), and shaded areas. The system examines the electroluminescence (EL) image of a solar cell and determines its acceptance or rejection status based on the presence and size of the crack. The proposed system was tested on various solar cells and achieved a high degree of accuracy, with an acceptance rate of up to 99.5%. The system was validated with thermal testing using real-world cases, such as shaded areas and microcracks, which were accurately predicted by the system. The results show that the proposed system is a valuable tool for evaluating the condition of PV cells and can lead to improved efficiency. The study also shows that the proposed CNN model outperforms previous studies and can have significant implications for the PV industry by reducing the number of defective cells and improving the overall efficiency of PV assembly units.