Heading tracking control with an adaptive hybrid control for under actuated underwater glider

ISA Trans. 2018 Sep:80:554-563. doi: 10.1016/j.isatra.2018.06.012. Epub 2018 Jul 18.

Abstract

The underwater glider changes its direction to follow the preset path in the horizontal plane only by flapping its vertical rudder. Heading tracking control plays the core role in the navigation process. To deal with non-linear flow disturbance and saturation in actuator, a new hybrid heading tracking control algorithm was presented, which integrated an adaptive fuzzy incremental PID (AFIPID) and an anti-windup (AW) compensator to improve the adaptability and robustness of underwater glider's heading control. The dynamic model of an underwater glider named as Petrel-II 200 was modeled to serve as a controlled plant. The proposed heading tracking control algorithm was described in detail, where the rudder angle, a control quantum to the controlled plant were calculated to get forces and moments required for the desired glider heading. A closed loop motion control system with desired heading angle as input and actual heading angle output was put forward, which included the dynamic model of the Petrel-II 200 and the given heading tracking control algorithm. The simulations followed three typical mathematical signals and the experimental tests were carried out by taking in the dynamic parameters of the controlled plant. And the effectiveness of the proposed control algorithm was assessed and verified.

Keywords: Adaptive fuzzy incremental PID; Anti-windup compensator; Dynamic model; Heading tracking control; Underwater glider.