Understanding the linkages between spatio-temporal urban land system changes and land surface temperature in Srinagar City, India, using image archives from Google Earth Engine

Environ Sci Pollut Res Int. 2023 Oct;30(49):107281-107295. doi: 10.1007/s11356-023-28889-9. Epub 2023 Jul 26.

Abstract

Land-use and land-cover (LULC) is an important component for sustainable natural resource management, and there are considerable impacts of the rapid anthropogenic LULC changes on environment, ecosystem services, and land surface processes. One of the significant adverse implications of the rapidly changing urban LULC is the increase in the Land Surface Temperature (LST) resulting in the urban heat island effect. In this study, we used a time series of Landsat satellite images from 1992 to 2020 in the Srinagar city of the Kashmir valley, North-western Himalaya, India to understand the linkages between LULC dynamics and LST, derived from the archived images using the Google Earth Engine (GEE). Furthermore, the relationship between LST, urban heat island (UHI), and biophysical indices, i.e., Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI), was also analysed. LULC change detection analysis from 1992 to 2020 revealed that the built-up area has increased significantly from 12% in 1992 to 40% in 2020, while the extent of water bodies has decreased from 6% in 1992 to 4% in 2020. The area under plantations has decreased from 26% in 1992 to 17% in 2020, and forests have decreased from 4 to 2% during the same period. Urban sprawl of Srinagar city has resulted in the depletion of natural land covers, modification of natural drainage, and loss of green and blue spaces over the past four decades. The study revealed that the maximum LST in the city has increased by 11°C between 1992 and 2020. During the same period of time, the minimum LST in the city has increased by 5°C, indicating the impact of urbanization on the city environment, which is reflected by the observed changes in various environmental indices. UHI impact in the city is quite evident with the maximum LST at the city centre having increased from 13.03°C in 1992 to 22.01°C in 2020. The findings shall serve as a vital source of knowledge for urban planners and decision-makers in developing sustainable urban environmental management strategies for Srinagar city.

Keywords: Climate change; Google Earth Engine (GEE); LST; Landsat; Urban LULC.

MeSH terms

  • Cities
  • Ecosystem*
  • Environmental Monitoring / methods
  • Forests
  • Hot Temperature*
  • India
  • Search Engine
  • Temperature
  • Urbanization
  • Water

Substances

  • Water