Terpenoid Hydrazones as Biomembrane Penetration Enhancers: FT-IR Spectroscopy and Fluorescence Probe Studies

Molecules. 2021 Dec 29;27(1):206. doi: 10.3390/molecules27010206.

Abstract

Hydrazones based on mono- and bicyclic terpenoids (verbenone, menthone and carvone) have been investigated in vitro as potential biomembrane penetration enhancers. In this regard, liposomes composed of lecithin or cardiolipin as phospholipid phase components with incorporated fluorescence probes have been prepared using the thin-film ultrasonic dispersion method. The mean particle size of the obtained liposomes, established using laser diffraction, was found to be 583 ± 0.95 nm, allowing us to categorize them as multilamellar vesicles (MLVs) according to their morphology. Pursuant to fluorescence analysis, we may assume a reduction in microviscosity and, consequently, a decrease in the packing density of lecithin and cardiolipin lipids to be the major mechanism of action for terpenoid hydrazones 1-15. In order to determine the molecular organization of the lipid matrix, lipids were isolated from rat strata cornea (SCs) and their interaction with tested compounds was studied by means of Fourier transform infrared spectroscopy. FT-IR examination suggested that these hydrazones fluidized the SC lipids via the disruption of the hydrogen-bonded network formed by polar groups of SC constituents. The relationship between the structure of terpenoid hydrazones and their ability to enhance biomembrane penetration is discussed.

Keywords: FT-IR spectroscopy; fluorescence probe; hydrazones; laser diffraction; lipids; liposomes; penetration enhancers; pyrene; stratum corneum; terpenes.

MeSH terms

  • Fluorescence
  • Fluorescent Dyes
  • Hydrazones / analysis*
  • Hydrazones / chemistry*
  • Hydrogen Bonding
  • Lipids / chemistry
  • Liposomes / chemistry
  • Molecular Structure
  • Phospholipids / chemistry
  • Spectroscopy, Fourier Transform Infrared*
  • Terpenes / chemistry*

Substances

  • Fluorescent Dyes
  • Hydrazones
  • Lipids
  • Liposomes
  • Phospholipids
  • Terpenes