Thermodynamics of Formation and Liquid-Vapor Phase Transitions of Antimony Alloys with Selenium and Sulfur

Materials (Basel). 2023 Dec 26;17(1):125. doi: 10.3390/ma17010125.

Abstract

The authors conducted liquid solution studies of antimony with selenium and sulfur in order to provide information on the thermodynamic functions of the formation of these alloys. The studies are based on the vapor pressure values of the components, comprising the double partial systems of antimony with antimony chalcogenides (Sb2Se3 and Sb2S3) and antimony chalcogenides with chalcogens (Se and S). We calculated the thermodynamic functions of mixing (graphical dependencies) and evaporation (tabular data) based on the partial vapor pressure values of components, which are represented by temperature-concentration dependencies. Based on the partial pressure values of melt components, we calculated the boundaries of liquid and vapor coexistence fields at atmospheric pressure (101.3 kPa) and in a vacuum (0.9 kPa). We established the absence of the stratification region on the Sb2S3-S diagram due to the fact that, on state diagrams, the stratification region is indicated at temperatures above 530 °C, while the boiling point of liquid sulfur at an atmospheric pressure corresponds to 429 °C. Based on the position of the field boundaries (L + V) on the state diagrams, the separation of antimony alloys with selenium and sulfur via distillation into elements at atmospheric pressure is difficult due to the high boiling points of antimony-based alloys in a vacuum: Sb2Se3-Se melts require some number of condensate re-evaporation cycles.

Keywords: boundaries; enthalpy; entropy; evaporation; melt; mixing; vapor pressure; vapor–liquid equilibrium.