Coordination Behavior of [Cp″2Zr(µ1:1-As4)] towards Lewis Acids

Molecules. 2021 May 17;26(10):2966. doi: 10.3390/molecules26102966.

Abstract

The functionalization of the arsenic transfer reagent [Cp″2Zr(η1:1-As4)] (1) focuses on modifying its properties and enabling a broader scope of reactivity. The coordination behavior of 1 towards different Lewis-acidic transition metal complexes and main group compounds is investigated by experimental and computational studies. Depending on the steric requirements of the Lewis acids and the reaction temperature, a variety of new complexes with different coordination modes and coordination numbers could be synthesized. Depending on the Lewis acid (LA) used, a mono-substitution in [Cp″2Zr(µ,η1:1:1:1-As4)(LA)] (LA = Fe(CO)4 (4); B(C6F5)3 (7)) and [Cp″2Zr(µ,η3:1:1-As4)(Fe(CO)3)] (5) or a di-substitution [Cp″2Zr(µ31:1:1:1-As4)(LA)2] (LA = W(CO)5 (2); CpMn(CO)2 (3); AlR3 (6, R = Me, Et, iBu)) are monitored. In contrast to other coordination products, 5 shows an η3 coordination in which the butterfly As4 ligand is rearranged to a cyclo-As4 ligand. The reported complexes are rationalized in terms of inverse coordination.

Keywords: DFT calculations; Lewis acids; arsenic; coordination chemistry; zirconium.