A Light-Weight Artificial Neural Network for Recognition of Activities of Daily Living

Sensors (Basel). 2023 Jun 24;23(13):5854. doi: 10.3390/s23135854.

Abstract

Human activity recognition (HAR) is essential for the development of robots to assist humans in daily activities. HAR is required to be accurate, fast and suitable for low-cost wearable devices to ensure portable and safe assistance. Current computational methods can achieve accurate recognition results but tend to be computationally expensive, making them unsuitable for the development of wearable robots in terms of speed and processing power. This paper proposes a light-weight architecture for recognition of activities using five inertial measurement units and four goniometers attached to the lower limb. First, a systematic extraction of time-domain features from wearable sensor data is performed. Second, a small high-speed artificial neural network and line search method for cost function optimization are used for activity recognition. The proposed method is systematically validated using a large dataset composed of wearable sensor data from seven activities (sitting, standing, walking, stair ascent/descent, ramp ascent/descent) associated with eight healthy subjects. The accuracy and speed results are compared against methods commonly used for activity recognition including deep neural networks, convolutional neural networks, long short-term memory and convolutional-long short-term memory hybrid networks. The experiments demonstrate that the light-weight architecture can achieve a high recognition accuracy of 98.60%, 93.10% and 84.77% for seen data from seen subjects, unseen data from seen subjects and unseen data from unseen subjects, respectively, and an inference time of 85 μs. The results show that the proposed approach can perform accurate and fast activity recognition with a reduced computational complexity suitable for the development of portable assistive devices.

Keywords: activity recognition; deep learning; lower-limb motion recognition; wearable sensors.

MeSH terms

  • Activities of Daily Living*
  • Algorithms
  • Human Activities
  • Humans
  • Neural Networks, Computer*
  • Walking

Grants and funding

This research received no external funding.