Lead contamination affects the primary productivity traits, biosynthesis of macromolecules and distribution of metal in durum wheat (Triticumdurum L.)

Saudi J Biol Sci. 2021 Sep;28(9):4946-4956. doi: 10.1016/j.sjbs.2021.06.093. Epub 2021 Jul 3.

Abstract

Lead (Pb) pollution emerged as an international issue particularly during second and third industrial revolution and is of serious global concern. Cereal crops have shown different capabilities, innate variability and mechanisms to cope with heavy metals present in their environment. Keeping in view the perspectives of food security and safety with increasing demand for Triticum durum L. it becomes imperative to appraise sustainability potential of the crop for Pb contaminated soils. The current study was conducted to test the hypothesis that T. durum germplasm holds genetic variability to evolve under Pb contamination through modulations of morpho-biochemical parameters of selective advantage. The performance of nine T. durum L. cultivars (CBD25, CBD46, CBD58, CBD59, CBD63, CBD66, CBD68, CBD69 and CBD82) was evaluated following exposure to varying Pb levels (control, 10, 20 and 40 mg kg-1) in soil. Growth, biosynthesis of macromolecules and metal distribution in plant parts were assessed using valid procedures and protocols. The cultivars exhibited a differential degree of tolerance to Pb and among the tested germplasm, CBD59 performed better followed by CBD63 and CBD66 for their primary productivity traits, biosynthesis of pigments and other macromolecules (amino acids, proteins and sugar) along with resilience for Pb uptake and its consequent bioaccumulation in grains. The traits used in the study served as strong predictors to provide superior/selective ability to survive under contaminated environment. The study signified that metal tolerance/sensitivity in the cultivars is independent of magnitude of metal stress, growth responses and Pb accumulation in plant parts hence varied in space and time. The existence of genetic variability, which is a pre-requisite for selection can definitely be of great advantage for future breeding projects to develop high yielding varieties/ cultivars of durum wheat with Pb free grains to assure food security and safety.

Keywords: Durum wheat cultivars; Food security and safety; Lead pollution; Macromolecules; Pb bioaccumulation; Primary productivity traits.