Integration of Sentinel-1A Radar and SMAP Radiometer for Soil Moisture Retrieval over Vegetated Areas

Sensors (Basel). 2024 Mar 30;24(7):2217. doi: 10.3390/s24072217.

Abstract

NASA's Soil Moisture Active Passive (SMAP) was originally designed to combine high-resolution active (radar) and coarse-resolution but highly sensitive passive (radiometer) L-band observations to achieve unprecedented spatial resolution and accuracy for soil moisture retrievals. However, shortly after SMAP was put into orbit, the radar component failed, and the high-resolution capability was lost. In this paper, the integration of an alternative radar sensor with the SMAP radiometer is proposed to enhance soil moisture retrieval capabilities over vegetated areas in the absence of the original high-resolution radar in the SMAP mission. ESA's Sentinel-1A C-band radar was used in this study to enhance the spatial resolution of the SMAP L-band radiometer and to improve soil moisture retrieval accuracy. To achieve this purpose, we downscaled the 9 km radiometer data of the SMAP to 1 km utilizing the Smoothing Filter-based Intensity Modulation (SFIM) method. An Artificial Neural Network (ANN) was then trained to exploit the synergy between the Sentinel-1A radar, SMAP radiometer, and the in situ-measured soil moisture. An analysis of the data obtained for a plant growing season over the Mississippi Delta showed that the VH-polarized Sentinel-1A radar data can yield a coefficient of correlation of 0.81 and serve as a complimentary source to the SMAP radiometer for more accurate and enhanced soil moisture prediction over agricultural fields.

Keywords: SMAP; Sentinel-1A; image fusion; soil moisture.