Resistance of Pastes from Carbonated, Low-Lime Calcium Silica Cements to External Sulfate Attack

Materials (Basel). 2023 Jun 9;16(12):4276. doi: 10.3390/ma16124276.

Abstract

This paper presents the results of a study on the evaluation of resistance of pastes from carbonated, low-lime calcium silica cements to external sulfate attack. The extent of chemical interaction between sulfate solutions and paste powders was assessed by quantifying the amount of species that leached out from carbonated pastes using ICP-OES and IC techniques. In addition, the loss of carbonates from the carbonated pastes exposed to sulfate solutions and the corresponding amounts of gypsum formed were also monitored by using the TGA and QXRD techniques. The changes in the structure of silica gels were evaluated using FTIR analysis. The results of this study revealed that the level of resistance of carbonated, low-lime calcium silicates to external sulfate attack was affected by the degree of crystallinity of calcium carbonate, the type of calcium silicate, and the type of cation present in the sulfate solution.

Keywords: calcium silicates; carbonation; sulfate resistance.

Grants and funding

The publication cost of this paper was covered with funds from the Polish National Agency for Academic Exchange (NAWA): “MATBUD’2023—Developing international scientific cooperation in the field of building materials engineering” BPI/WTP/2021/1/00002, MATBUD’2023.