Intestinal Health and Threonine Requirement of Growing Pigs Fed Diets Containing High Dietary Fibre and Fermentable Protein

Animals (Basel). 2020 Nov 6;10(11):2055. doi: 10.3390/ani10112055.

Abstract

Dietary fibre (DF) and fermentable crude protein (fCP) are dietary factors which affect nutrient utilization and intestinal health in pigs. A nitrogen (N)-balance study was conducted to determine the impact of DF and fCP on threonine (Thr) requirement for protein deposition (PD) and indicators of intestinal health. A total of 160 growing pigs (25 kg) were randomly assigned to 1 of 20 dietary treatments in a 2 × 2 × 5 factorial arrangement in a randomized complete block design with dietary fibre (low (LF) or high fibre (HF)], fCP [low (LfCP) or high fCP (HfCP)) and Thr (0.52, 0.60, 0.68, 0.76, or 0.82% standardized ileal digestible) as factors. Then, 4-day total urine and fecal collection was conducted, and pigs were euthanized for intestinal tissue and digesta sampling. Feeding high DF, regardless of fCP content, increased Thr requirement for PD (p < 0.05). High fCP, regardless of DF content, reduced Thr requirement for PD. Serum antioxidant capacity increased as dietary Thr level increased (p < 0.05). Cecal digesta short-chain fatty acids (SCFA) increased (p < 0.05) with HF and branched-chain fatty acids (BCFA) increased with HfCP and reduced with HF (p < 0.05). HfCP reduced (p < 0.05) mucin-2 (MUC2) expression in the colon of the HF but not the LF fed pigs and HF increased MUC2 in the LfCP but not the HfCP fed pigs. Feeding HF diet increased (p < 0.05) expression of zonula occludens-1 in the LfCP with no effect on HfCP fed pigs. Ammonia concentration in both cecum and colon increased (p < 0.05) in the HfCP fed pigs. Overall, high DF reduced the negative impact of HfCP on intestinal health, as indicated by alterations in SCFA and BCFA production and gut barrier gene expression. While increased dietary Thr content is required for PD in pigs fed high DF, feeding high fCP reduced Thr requirements.

Keywords: dietary fibre; fermentable protein; gut health; protein deposition; threonine.