Detection of magnetized quark-nuggets, a candidate for dark matter

Sci Rep. 2017 Aug 18;7(1):8758. doi: 10.1038/s41598-017-09087-3.

Abstract

Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes ~85% of the universe's mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with a ~1012-T magnetic field. We find that the magnetic field produces a magnetopause with surrounding plasma, as the earth's magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in air, water, and land. We conclude the water option is most promising.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't