Salt Cocrystal of Diclofenac Sodium-L-Proline: Structural, Pseudopolymorphism, and Pharmaceutics Performance Study

Pharmaceutics. 2020 Jul 21;12(7):690. doi: 10.3390/pharmaceutics12070690.

Abstract

Previously, we have reported on a zwitterionic cocrystal of diclofenac acid and L-proline. However, the solubility of this multicomponent crystal was still lower than that of diclofenac sodium salt. Therefore, this study aimed to observe whether a multicomponent crystal could be produced from diclofenac sodium hydrate with the same coformer, L-proline, which was expected to improve the pharmaceutics performance. Methods involved screening, solid phase characterization, structure determination, stability, and in vitro pharmaceutical performance tests. First, a phase diagram screen was carried out to identify the molar ratio of the multicomponent crystal formation. Next, the single crystals were prepared by slow evaporation under two conditions, which yielded two forms: one was a rod-shape and the second was a flat-square form. The characterization by infrared spectroscopy, thermal analysis, and diffractometry confirmed the formation of the new phases. Finally, structural determination using single crystal X-ray diffraction analysis solved the new salt cocrystals as a stable diclofenac-sodium-proline-water (1:1:1:4) named NDPT (natrium diclofenac proline tetrahydrate), and unstable diclofenac-sodium-proline-water (1:1:1:1), named NDPM (natrium diclofenac proline monohydrate). The solubility and dissolution rate of these multicomponent crystals were superior to those of diclofenac sodium alone. The experimental results that this salt cocrystal is suitable for further development.

Keywords: L-proline; diclofenac sodium; dissolution; monohydrate; multicomponent crystal; salt cocrystal; solubility; stability; tetrahydrate.