Human J-Domain Protein DnaJB6 Protects Yeast from [ PSI+] Prion Toxicity

Biology (Basel). 2022 Dec 18;11(12):1846. doi: 10.3390/biology11121846.

Abstract

Human J-domain protein (JDP) DnaJB6 has a broad and potent activity that prevents formation of amyloid by polypeptides such as polyglutamine, A-beta, and alpha-synuclein, related to Huntington's, Alzheimer's, and Parkinson's diseases, respectively. In yeast, amyloid-based [PSI+] prions, which rely on the related JDP Sis1 for replication, have a latent toxicity that is exposed by reducing Sis1 function. Anti-amyloid activity of DnaJB6 is very effective against weak [PSI+] prions and the Sup35 amyloid that composes them, but ineffective against strong [PSI+] prions composed of structurally different amyloid of the same Sup35. This difference reveals limitations of DnaJB6 that have implications regarding its therapeutic use for amyloid disease. Here, we find that when Sis1 function is reduced, DnaJB6 represses toxicity of strong [PSI+] prions and inhibits their propagation. Both Sis1 and DnaJB6, which are regulators of protein chaperone Hsp70, counteract the toxicity by reducing excessive incorporation of the essential Sup35 into prion aggregates. However, while Sis1 apparently requires interaction with Hsp70 to detoxify [PSI+], DnaJB6 counteracts prion toxicity by a different, Hsp70-independent mechanism.

Keywords: DnaJB6; J-domain proteins; amyloid; amyloid toxicity; yeast prions.