Adolescent Intermittent Ethanol Exposure Effects on Kappa Opioid Receptor Mediated Dopamine Transmission: Sex and Age of Exposure Matter

Brain Sci. 2020 Jul 23;10(8):472. doi: 10.3390/brainsci10080472.

Abstract

Underage alcohol drinking increases the risk of developing alcohol use disorder (AUD). In rodents, adolescent ethanol exposure augments ethanol consumption and anxiety-like behavior while reducing social interaction. However, the underlying mechanisms driving these adaptations are unclear. The dopamine and kappa opioid receptor (KOR) systems in the nucleus accumbens (NAc) are implicated in affective disorders, including AUD, with studies showing augmented KOR function and reduced dopamine transmission in ethanol-dependent adult animals. Thus, here we examine the impact of adolescent intermittent ethanol (AIE) exposure on dopamine transmission and KOR function in the NAc. Rats were exposed to water or ethanol (4 g/kg, intragastrically) every other day during early (postnatal day (PD) 25-45) or late (PD 45-65) adolescence. While AIE exposure during early adolescence (early-AIE) did not alter dopamine release in male and female rats, AIE exposure during late adolescence (late-AIE) resulted in greater dopamine release in males and lower dopamine release in females. To determine the impact of AIE on KOR function, we measured the effect of KOR activation using U50,488 (0.01-1.00 µM) on dopamine release. Early-AIE exposure potentiated KOR-mediated inhibition of dopamine release in females, while late-AIE exposure attenuated this effect in males. Interestingly, no differences in KOR function were observed in early-AIE exposed males and late-AIE exposed females. Together, these data suggest that AIE exposure impact on neural processes is dependent on sex and exposure timing. These differences likely arise from differential developmental timing in males and females. This is the first study to show changes in KOR function following AIE exposure.

Keywords: adolescent intermittent ethanol exposure; dopamine; kappa opioid receptors; nucleus accumbens.