Optical Properties and Amplified Spontaneous Emission of Novel MDMO-PPV/C500 Hybrid

Polymers (Basel). 2017 Feb 17;9(2):71. doi: 10.3390/polym9020071.

Abstract

The influence of the solvent nature on optical properties of poly[2-methoxy-5-3,7-dimethyloctyloxy-1,4-phenylenevinylene] (MDMO-PPV)/Coumarine 500 (C500) have been investigated. In addition, the amplified spontaneous emission (ASE) from MDMO-PPV and efficient energy transfer between the MDMO-PPV and C500 has been verified. The MDMO-PPV was dissolved in aromatic and nonaromatic solvents, while the solution blending method was employed to prepare the MDMO-PPV:C500 hybrid. The quantum yield of the MDMO-PPV was found to increase with the reduction of a few factors such as polarity index of the solvent, absorption cross section (σa), emission cross section (σe), and extinction coefficient (εmax). The fluorescence spectra of the MDMO-PPV appears from two vibronic band transitions (0-0, 0-1) and the ASE occurs at 0-1 transition, which was verified by the ASE from MDMO-PPV. The MDMO-PPV in toluene exhibited the best ASE efficiency due to its high quantum yield compared with other solvents. Strong overlap between the absorption spectrum of MDMO-PPV and emission spectrum of C500 confirmed the efficient energy transfer between them. Moreover, the ASE for energy transfer of the MDMO-PPV:C500 hybrid was proved.

Keywords: amplified spontaneous emission; energy transfer; optical properties; quantum yield.