Determination of Diosmin in Pharmaceutical Products with Chemically Modified Voltammetric Sensors

Int J Mol Sci. 2021 Jul 7;22(14):7315. doi: 10.3390/ijms22147315.

Abstract

In this paper, the electrochemical behavior of two types of sensors based on modified screen-printed electrodes (one screen-printed electrode based on carbon (SPCE) and another screen-printed electrode modified with Prussian Blue (PB/SPCE)) was studied with the aim of sensitive detection of diosmin, an active pharmaceutical compound from the class of flavonoids. The scan electron microscopy technique was used for the morphological characterization of PB/SPCE. The preliminary analysis assessed the electrochemical behavior of SPCE and PB/SPCE in KCl solution and in a double solution of potassium ferrocyanide-potassium chloride. It was shown that the active area of PB/SPCE is superior to the one of SPCE, the greater sensitivity being related with the presence of the electroactive modifier. Similarly, in the case of diosmin detection, the PB/SPCE sensor detect more sensitivity the diosmin due to the electrocatalytic effect of PB. From the study of the influence of reaction rate on the sensor's electrochemical response, it was shown that the detection process is controlled by the adsorption process, the degree of surface coverage with electroactive molecules being higher in the case of PB/SPCE. From the PB/SPCE calibration curve, it wasdetermined that it has high sensitivity and low detection and quantification limit values (limit of detection 5.22 × 10-8 M). The applicability of the PB/SPCE sensor was confirmed by sensitive analysis of diosmin in pharmaceutical products. The voltammetric method is suitable for the detection and quantification of diosmin in pharmaceutical products. The method is simple, accurate, and quick and can be used in routine analysis in the examination of the quality of pharmaceutical products and other types of samples.

Keywords: cyclic voltammetry; diosmin; pharmaceutical product; sensor.

MeSH terms

  • Carbon / chemistry
  • Diosmin / chemistry*
  • Electrochemical Techniques / methods
  • Electrodes
  • Limit of Detection
  • Pharmaceutical Preparations / chemistry*
  • Sensitivity and Specificity

Substances

  • Pharmaceutical Preparations
  • Carbon
  • Diosmin