A Linear Model to Describe Branching and Allometry in Root Architecture

Plants (Basel). 2019 Jul 12;8(7):218. doi: 10.3390/plants8070218.

Abstract

Root architecture is a complex structure that comprises multiple traits of the root phenotype. Novel platforms and models have been developed to better understand root architecture. In this methods paper, we introduce a novel allometric model, named rhizochron index (m), which describes lateral root (LR) branching and elongation patterns across the primary root (PR). To test our model, we obtained data from 16 natural accessions of Arabidopsis thaliana at three stages of early root development to measure conventional traits of root architecture (e.g., PR and LR length), and extracted the rhizochron index (m). In addition, we tested previously published datasets to assess the utility of the rhizochron index (m) to distinguish mutants and environmental effects on root architecture. Our results indicate that rhizochron index (m) is useful to distinguish the natural variations of root architecture between A. thaliana accessions, but not across early stages of root development. Correlation analyses in these accessions showed that m is a novel trait that partially captures information from other root architecture traits such as total lateral root length, and the ratio between lateral root and primary root lengths. Moreover, we found that the rhizochron index was useful to distinguish ABA effect on root architecture, as well as the mutant pho1 phenotype. We propose the rhizochron index (m) as a new feature of the root architectural system to be considered, in addition to conventional traits in future investigations.

Keywords: Arabidopsis thaliana; allometric modeling; linear model; natural variation; phenotyping; root architecture; root branching.