Performance of magnetic dipole contribution on ferromagnetic non-Newtonian radiative MHD blood flow: An application of biotechnology and medical sciences

Heliyon. 2023 Feb 1;9(2):e13369. doi: 10.1016/j.heliyon.2023.e13369. eCollection 2023 Feb.

Abstract

Casson flow ferromagnetic liquid blood flow over stretching region is studied numerically. The domain is influence by radiation and blood flow velocity and thermal slip conditions. Blood acts an impenetrable magneto-dynamic liquid yields governing equations. The conservative governing nonlinear partial differential equations, reduced to ODEs by the help of similarity translation technique. The transport equations were transformed into first order ODEs and the resultant system are solved with help of 4th order R-K scheme. Performing a magnetic dipole with a Casson flow across a stretched region with Brownian motion and Thermophoresis is novelty of the problem. Significant applications of the study in some spheres are metallurgy, extrusion of polymers, production in papers and rubber manufactured sheets. Electronics, analytical instruments, medicine, friction reduction, angular momentum shift, heat transmission, etc. are only few of the many uses for ferromagnetic fluids. As ferromagnetic interaction parameter value improves, the skin-friction, Sherwood and Nusselt numbers depreciates. A comparative study of the present numerical scheme for specific situations reveals a splendid correlation with earlier published work. A change in blood flow velocity magnitude has been noted due to Casson parameter. Increasing change in blood flow temperature noted due to Casson parameter. Skin-friction strengthened and Nusselt number is declined with Casson parameter. The limitation of current work is a non-invasive magnetic blood flow collection system using commercially available magnetic sensors instead of SQUID or electrodes.

Keywords: Casson fluid; Magnetic dipole; Magnetohydrodynamic; Radiation; Slip conditions; Stretching sheet.