Adsorption Properties of Essential Oils on Polylactic Acid Microparticles of Different Sizes

Materials (Basel). 2022 Sep 23;15(19):6602. doi: 10.3390/ma15196602.

Abstract

The interaction between the polymer and the materials in contact with it affects its applicability. This can be particularly important in applications such as packaging or controlled drug delivery systems. Because of these interactions, the adsorption and diffusion properties of polylactic acid (PLA) are important. The absorption capacity of different polylactic acid particles for different additives like essential oils (Thymus vulgaris, Melissa officinalis, and Foeniculum vulgare essential oils) was investigated depending on the concentration of the essential oil. The PLA microparticles were prepared by the solvent evaporation emulsification method. The prepared particles had a degree of crystallinity of 0.1% and 16.1%, respectively, according to the granules used. This affects the particles' adsorption properties. The specific essential oil uptake of the more crystalline microparticles was on average 15% higher than that of the amorphous particles. The specific amount of essential oil adsorbed decreases with the decreasing concentration of essential oil in the solutions. We also investigated whether the amount of essential oil taken up was correlated with the solubility parameter of the essential oils. We concluded that the difference between the adsorption of the essential oils on the polymer was related to the essential oils' Hansen solubility parameter.

Keywords: Hansen solubility parameter; essential oil adsorption; polylactic acid microparticles.

Grants and funding

This research received no external funding.