Immobilizing Laccase on Modified Cellulose/CF Beads to Degrade Chlorinated Biphenyl in Wastewater

Polymers (Basel). 2018 Jul 19;10(7):798. doi: 10.3390/polym10070798.

Abstract

Novel modified cellulose/cellulose fibril (CF) beads (MCCBs) loaded with laccase were prepared to degrade polychlorinated biphenyls (PCBs) in wastewater. The proper porous structure in MCCBs was achieved by introducing nano CaCO₃ (as a pore forming agent) in cellulose/CF (CCBs) beads during the preparation process. Cellulose/CF composite beads were modified by maleic anhydride to introduce carboxyl groups. Laccase was immobilized on the MCCBs through electrostatic adsorption and covalent bonding. The effects of pH, laccase concentration and contact time on immobilization yields and recovered activity were investigated. The best conditions were pH 4, concentration 16 g/L and contact time 3 h. The immobilized laccase under these conditions showed a good performance in thermal and operational stability. The laccase immobilized on MCCB beads can remove 85% of 20 mg/L 4-hydroxy-3,5-dichlorobiphenyl (HO-DiCB) in wastewater. The results demonstrated that MCCBs, as a new type of green-based support, are very promising in material immobilizing laccase. This technology may be of potential advantage for the removal of polychlorinated biphenyls in wastewater from an environmental point of view.

Keywords: adsorption; cellulose/CF beads; chlorinated biphenyl pollutants; laccase immobilization.