Role of Wood Fibers in Tuning Dynamic Rheology, Non-Isothermal Crystallization, and Microcellular Structure of Polypropylene Foams

Materials (Basel). 2018 Dec 30;12(1):106. doi: 10.3390/ma12010106.

Abstract

Microcellular polypropylene (PP)/wood fiber composite foams were fabricated via batch foaming assisted by supercritical CO₂ (scCO₂). Effects of wood fibers on rheology, crystallization, and foaming behaviors of PP were comprehensively investigated. The obtained results showed that the incorporation of wood fibers increased the complex viscosity and the storage modulus of the PP matrix. Jeziorny's model for non-isothermal crystallization kinetics indicated that wood fibers did not change the crystal growth. However, the crystallization rate of the PP matrix was decreased to a certain extent with increasing wood fiber loadings. The wood fiber exerts a noticeable role in improving the cell density and reducing the cell size, despite decreasing the expansion ratio. Interestingly, a "small-sized cells to large-sized cells" gradient cell structure was found around the wood fibers, implying cell nucleation was induced at the interface between wood fiber and PP matrix. When wood fiber loadings were specifically increased, a desirable microcellular structure was obtained. However, further increasing the wood fiber loadings deteriorated the cell structure. Moreover, the crystallinity of the composite foams initially decreased and then slightly increased with increasing wood fiber loadings, while the crystal size decreased.

Keywords: microcellular foaming; non-isothermal crystallization; polypropylene; rheology; supercritical CO2; wood fiber.