Compatibilization of Cellulose Nanocrystal-Reinforced Natural Rubber Nanocomposite by Modified Natural Rubber

Polymers (Basel). 2024 Jan 29;16(3):363. doi: 10.3390/polym16030363.

Abstract

Due to global warming and environmental concerns, developing a fully bio-based nanocomposite is an attractive issue. In this work, the cellulose nanocrystals (CNCs) extracted from Luffa cylindrica, a renewable resource, were explored as a bio-based reinforcing filler in natural rubber (NR) nanocomposites. In addition, modified natural rubber was explored as a potential compatibilizer to assist the filler dispersion in the rubber nanocomposite. The effect of the CNC content (0-15 phr) on cure characteristics and the mechanical, dynamic, and thermal properties of NR/CNC nanocomposites was investigated. The results showed that the scorch time and cure time of the nanocomposites increased with increased CNC contents. The optimum tensile strength of NR nanocomposites having 5 phr of the CNC (NR-CNC5) was 20.60% higher than the corresponding unfilled NR vulcanizate, which was related to the increased crosslink density of the rubber nanocomposite. The incorporation of oxidized-degraded NR (ODNR) as a compatibilizer in the NR-CNC5 nanocomposite exhibited a considerably reduced cure time, which will lead to energy conservation during production. Moreover, the cure rate index of NR-CNC5-ODNR is much higher than using a petroleum-based silane coupling agent (Si69) as a compatibilizer in the NR-CNC5 nanocomposite. The good filler dispersion in the NR-CNC5 nanocomposite compatibilized by ODNR is comparable to the use of Si69, evidenced by scanning electron microscopy. There is, therefore, a good potential for the use of modified NR as a bio-based compatibilizer for rubber nanocomposites.

Keywords: cellulose nanocrystals; compatibilizer; mechanical properties; modified natural rubber; nanocomposite.

Grants and funding

This research project is supported by the Teacher Development Scholarship of Udon Thani Rajabhat University.