Scratch and Wear Behaviour of Co-Cr-Mo Alloy in Ringer's Lactate Solution

Materials (Basel). 2023 Apr 6;16(7):2923. doi: 10.3390/ma16072923.

Abstract

Cobalt-chromium-molybdenum (Co-Cr-Mo) alloy is a material recommended for biomedical implants; however, to be suitable for this application, it should have good tribological properties, which are related to grain size. This paper investigates the tribological behaviour of a Co-Cr-Mo alloy produced using investment casting, together with electromagnetic stirring, to reduce its grain size. The samples were subjected to wear and scratch tests in simulated body fluid (Ringer's lactate solution). Since a reduction in grain size can influence the behaviour of the material, in terms of resistance and tribological response, four samples with different grain sizes were produced for use in our investigation of the behaviour of the alloy, in which we considered the friction coefficient, wear, and scratch resistance. The experiments were performed using a tribometer, with mean values for the friction coefficient, normal load, and tangential force acquired and recorded by the software. Spheres of Ti-6Al-4V and 316L steel were used as counterface materials. In addition, to elucidate the influence of grain size on the mechanical properties of the alloy, observations were conducted via scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD). The results showed changes in the structure, with a reduction in grain size from 5.51 to 0.79 mm. Using both spheres, the best results for the friction coefficient and wear volume corresponded to the sample with the smallest grain size of 0.79 mm. The friction coefficients obtained were 0.37 and 0.45, using the Ti-6Al-4V and 316L spheres, respectively. These results confirm that the best surface finish for Co-Cr-Mo alloy used as a biomedical implant is one with a smaller grain size, since this results in a lower friction coefficient and low wear.

Keywords: cobalt–chromium–molybdenum alloy; hip replacements; orthopaedics; scratch test; wear.

Grants and funding

This research was funded by the GRIS project (POCI-01-0145-FEDER-032460) and co-financed by COMPETE 2020, through FEDER and FCT. The authors gratefully acknowledge funding from the projects MAGIC 4.0 (POCI-01-0247-FEDER-038128) and HIPERCAST (POCI-01-0247-FEDER-045391), co-financed by COMPETE 2020 through FEDER.