Behaviour of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beam-Column Joints under Reverse Cyclic Loading

Polymers (Basel). 2022 May 31;14(11):2239. doi: 10.3390/polym14112239.

Abstract

Beam-column joints are extremely vulnerable to lateral and vertical loads in reinforced concrete (RC) structures. This insufficiency in joint performance can lead to the failure of the whole structure in the event of unforeseen seismic and wind loads. This experimental work was conducted to study the behaviour of ternary blend geopolymer concrete (TGPC) beam-column joints with the addition of hybrid fibres, viz., steel and polypropylene fibres, under reverse cyclic loads. Nine RC beam-column joints were prepared and tested under reverse cyclic loading to recreate the conditions during an earthquake. M55 grade TGPC was designed and used in this present study. The primary parameters studied in this experimental investigation were the volume fractions of steel fibres (0.5% and 1.0%) and polypropylene fibres, viz., 0.1 to 0.25%, with an increment of 0.05%. In this study, the properties of hybrid fibre-reinforced ternary blend geopolymer concrete (HTGPC) beam-column joints, such as their ductility, energy absorption capacity, initial crack load and peak load carrying capacity, were investigated. The test results imply that the hybridisation of fibres effectively enhances the joint performance of TGPC. Also, an effort was made to compare the shear strength of HTGPC beam-column connections with existing equations from the literature. As the available models did not match the actual test results, a method was performed to obtain the shear strength of HTGPC beam-column connections. The developed equation was found to compare convincingly with the experimental test results.

Keywords: beam-column joint; ductility; energy absorption; geopolymer concrete; hybrid fibre; reverse cyclic loading; shear strength; ternary blend.