Giant and Multistage Nonlinear Optical Response in Porphyrin-Based Surface-Supported Metal-Organic Framework Nanofilms

Nano Lett. 2019 Dec 11;19(12):9095-9101. doi: 10.1021/acs.nanolett.9b04221. Epub 2019 Nov 27.

Abstract

Benefitting from the strong intrinsic nonlinear optical (NLO) property of the individual porphyrin molecule, the integration of porphyrin molecules into tightly aligned arrays may lead to intuitively promising high-performance materials of tailorable NLO effect. In order to verify this speculation, we prepare crystalline and highly oriented porphyrin-based surface-supported metal-organic framework nanofilms (SURMOFs) and then characterize their NLO performance. Results reveal that porphyrin-based SURMOFs exhibit the highest saturable absorption (SA) yet recorded with a third-order NLO absorption coefficient up to -10-3 cm/W, about 7 orders stronger than porphyrin solvents in which the porphyrin molecules are disordered, under a certain excitation strength. Further increasing the excitation strength shows that the NLO absorption property of the porphyrin-based SURMOFs can be effectively modulated from SA to reverse saturable absorption, followed by a reemerging SA. The multiple-stage NLO switching is assigned to the interplay of simultaneous one-photon SA, two-photon absorption, and two-photon SA effects. The superior and modulatable NLO property as well as the designable and ordered crystalline structure suggest that porphyrin-based SURMOFs might be employed as a new class of high-performance NLO materials with potential applications in novel optical switches or logic gates to realize the all-optical information process.

Keywords: Porphyrin; metal−organic framework nanofilms; nonlinear optical modulation; saturable absorption.

Publication types

  • Research Support, Non-U.S. Gov't