Transforming Marble Waste into High-Performance, Water-Resistant, and Thermally Insulative Hybrid Polymer Composites for Environmental Sustainability

Polymers (Basel). 2020 Aug 9;12(8):1781. doi: 10.3390/polym12081781.

Abstract

Marble waste is generated by marble processing units in large quantities and dumped onto open land areas. This creates environmental problems by contaminating soil, water, and air with adverse health effects on all the living organisms. In this work, we report on understanding the use of calcium-rich marble waste particulates (MPs) as economic reinforcement in recyclable polypropylene (PP) to prepare sustainable composites via the injection molding method. The process was optimized to make lightweight and high-strength thermally insulated sustainable composites. Physicochemical, mineralogical, and microscopic characterization of the processed marble waste particulates were carried out in detail. Composite samples were subsequently prepared via the injection molding technique with different filler concentrations (0%, 20%, 40%, 60%, and 80%) on weight fraction at temperatures of 160, 180, and 200 °C. Detailed analysis of the mechanical and thermal properties of the fabricated composites was carried out. The composites showed a density varying from 0.96 to 1.27 g/cm3, while the water absorption capacity was very low at 0.006%-0.034%. Marble waste particulates were found to considerably increase the tensile, as well as flexural, strength of the sustainable composites, which varied from 22.06 to 30.65 MPa and 43.27 to 58.11MPa, respectively, for the molding temperature of 160 °C. The impact strength of the sustainable composites was found to surge with the increment in filler concentration, and the maximum impact strength was recorded as 1.66 kJ/m2with 20% particulates reinforcement at a molding temperature of 200 °C. The thermal conductivity of the particulates-reinforced sustainable composites was as low as 0.23 Wm-1K-1 at a 200 °C molding temperature with 20% and 40% filler concentrations, and the maximum thermal conductivity was 0.48 Wm-1K-1 at a 160 °C molding temperature with 80% filler concentration. Our findings have shown a technically feasible option for manufacturing a lightweight composite with better mechanical and thermal properties using marble waste particulates as a potential civil infrastructural material.

Keywords: high-strength composite; injection-molded specimen; low-density materials; marble waste particulates; recycling; thermal conductivity.