Wetland technology for the treatment of HCH-contaminated water - Case study at Hajek site

Sci Total Environ. 2024 Jun 20:930:172660. doi: 10.1016/j.scitotenv.2024.172660. Epub 2024 Apr 20.

Abstract

Hexachlorocyclohexanes (HCH) isomers and their transformation products, such as chlorobenzenes (ClB), generate severe and persistent environmental problems at many sites worldwide. The Wetland technology employing oxidation-reduction, biosorption, biodegradation and phytoremediation methods can sufficiently treat HCH-contaminated water. The treatment process is inherently natural and requires no supplementary chemicals or energy. The prototype with a capacity of 3 L/s was installed at Hajek quarry spoil heap (CZ), to optimize the technology on a full scale. The system is fed by drainage water with an average concentration of HCH 129 μg/L, ClB 640 μg/L and chlorophenols (ClPh) of 16 μg/L. The system was tested in two years of operation, regularly monitored for HCH, ClB and ClPh, and maintained to improve its efficiency. The assessment was not only for environmental effects but also for socio and economic indicators. During the operation, the removal efficiency of HCH ranged from 53.5 % to 96.9 % (83.9 % on average) depending on the flow rate. Removal efficiency was not uniform for individual HCH isomers but exhibited the trend: α = γ = δ > β = ε. The improved water quality was reflected in a biodiversity increase expressed by a number of phytobenthos (diatoms) species, a common biomarker of aquatic environment quality. The Wetland outranked the conventional WWTP in 10 out of the 15 general categories, and it is the most relevant scenario from the socio, environmental, and economic aspects.

Keywords: Biodegradation; Bioindicators; Constructed wetland; Diatoms; Hexachlorocyclohexane; Lindane; Natural remediation, phytobenthos.

MeSH terms

  • Biodegradation, Environmental
  • Hexachlorocyclohexane* / analysis
  • Waste Disposal, Fluid / methods
  • Water Pollutants, Chemical* / analysis
  • Water Purification / methods
  • Wetlands*

Substances

  • Water Pollutants, Chemical
  • Hexachlorocyclohexane