Crystallization Behavior and Mechanical Properties of Poly(ε-caprolactone) Reinforced with Barium Sulfate Submicron Particles

Materials (Basel). 2021 May 2;14(9):2368. doi: 10.3390/ma14092368.

Abstract

Poly(ε-caprolactone) (PCL) was mixed with submicron particles of barium sulfate to obtain biodegradable radiopaque composites. X-ray images comparing with aluminum samples show that 15 wt.% barium sulfate (BaSO4) is sufficient to present radiopacity. Thermal studies by differential scanning calorimetry (DSC) show a statistically significant increase in PCL degree of crystallinity from 46% to 52% for 25 wt.% BaSO4. Non-isothermal crystallization tests were performed at different cooling rates to evaluate crystallization kinetics. The nucleation effect of BaSO4 was found to change the morphology and quantity of the primary crystals of PCL, which was also corroborated by the use of a polarized light optical microscope (PLOM). These results fit well with Avrami-Ozawa-Jeziorny model and show a secondary crystallization that contributes to an increase in crystal fraction with internal structure reorganization. The addition of barium sulfate particles in composite formulations with PCL improves stiffness but not strength for all compositions due to possible cavitation effects induced by debonding of reinforcement interphase.

Keywords: barium sulfate; crystallization kinetics; poly(ε-caprolactone); radiopacity.