Deficit Irrigation with Silicon Application as Strategy to Increase Yield, Photosynthesis and Water Productivity in Lettuce Crops

Plants (Basel). 2024 Apr 5;13(7):1029. doi: 10.3390/plants13071029.

Abstract

In regions where water is a limited resource, lettuce production can be challenging. To address this, water management strategies like deficit irrigation are used to improve water-use efficiency in agriculture. Associating this strategy with silicon (Si) application could help maintain adequate levels of agricultural production even with limited water availability. Two lettuce crop cycles were conducted in a completely randomized design, with a factorial scheme (2 × 3), with three irrigation levels (60%, 80% and 100%) of crop evapotranspiration (ETc), and with and without Si application. To explore their combined effects, morphological, productive, physiological and nutritional parameters were evaluated in the crops. The results showed that deficit irrigation and Si application had a positive interaction: lettuce yield of the treatment with 80% ETc + Si was statistically similar to 100% ETc without Si in the first cycle, and the treatment with 60% ETc + Si was similar to 100% ETc without Si in the second cycle. Photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate and total chlorophyll content increased under water-stress conditions with Si application; in the first cycle, the treatment with 80% ETc + Si increased by 30.1%, 31.3%, 7.8%, 28.46% and 50.3% compared to the same treatment without Si, respectively. Si application in conditions of water deficit was also beneficial to obtain a cooler canopy temperature and leaves with higher relative water content. In conclusion, we found that Si applications attenuate water deficit effects and provide a strategy to ameliorate the yield and water productivity in lettuce crops, contributing to more sustainable practices in agriculture.

Keywords: Lactuca sativa L.; biostimulant; irrigation management; water saving; water-use efficiency.

Grants and funding

This research received no external funding.