Biochemical and Molecular Characterization of PvNTD2, a Nucleotidase Highly Expressed in Nodules from Phaseolus vulgaris

Plants (Basel). 2020 Feb 1;9(2):171. doi: 10.3390/plants9020171.

Abstract

Nucleotides are molecules of great importance in plant physiology. In addition to being elementary units of the genetic material, nucleotides are involved in bio-energetic processes, play a role as cofactors, and are also components of secondary metabolites and the hormone cytokinin. The common bean (Phaseolus vulgaris) is a legume that transports the nitrogen fixed in nodules as ureides, compounds synthetized from purine nucleotides. The first step in this pathway is the removal of the 5'-phosphate group by a phosphatase. In this study, a gene that codes for a putative nucleotidase (PvNTD2) has been identified in P. vulgaris. The predicted peptide contains the conserved domains for haloacid dehalogenase-like hydrolase superfamily. The protein has been overexpressed in Escherichia coli, and the purified protein showed molybdate-resistant phosphatase activity with nucleoside monophosphates as substrates, confirming that the identified gene codes for a nucleotidase. The optimum pH for the activity was 7-7.5. The recombinant enzyme did not show special affinity for any particular nucleotide, although the behaviour with AMP was different from that with the other nucleotides. The activity was inhibited by adenosine, and a regulatory role for this nucleoside was proposed. The expression pattern of PvNTD2 shows that it is ubiquitously expressed in all the tissues analysed, with higher expression in nodules of adult plants. The expression was maintained during leaf ontogeny, and it was induced during seedling development. Unlike PvNTD1, another NTD previously described in common bean, the high expression of PvNTD2 was maintained during nodule development, and its possible role in this organ is discussed.

Keywords: Phaseolus vulgaris; nodules; nucleoside monophosphate; nucleotidase; phosphatase; ureide synthesis.