Incidence of Drug-Resistant Enterobacteriaceae Strains in Organic and Conventional Watermelons Grown in Tennessee

Foods. 2022 Oct 22;11(21):3316. doi: 10.3390/foods11213316.

Abstract

The production and consumption of organic fresh produce have constantly increased since the 1990s. Consumers prefer organic produce because it does not contain synthetic chemical residues that are often implicated in health problems. The contamination of fresh produce by pathogenic Enterobacteriaceae strains remains a major challenge, and is responsible for frequent foodborne disease outbreaks. The use of antibiotics has proved an effective treatment, but the increase in occurrences of antibiotic resistance is becoming a health challenge. This study seeks to establish the presence of antimicrobial resistance in Enterobacteriaceae on organic and conventional watermelon fruits. Watermelons used for this study were cultivated at the Tennessee State University Certified Organic Farm, Nashville. At harvest, nine fruits were selected from among fruits lying on plastic mulch, and nine from fruits lying on the soil of both organic and conventional plots. These were placed in sterile sample bags for microbial analysis. Spread plating technique, API 20E, and apiweb software were used for microbial isolation and identification. Identified strains were tested for antimicrobial resistance against 12 common antibiotics. Seventeen Enterobacteriaceae strains were isolated and identified. Isolates were susceptible to gentamycin, ciprofloxacin, and chloramphenicol, but were resistant to cefoxitin. Citrobacter freundii showed a 14.3% resistance to Streptomycin. Pantoea spp. and Providencia rettigeri showed 50% and 100% resistance to tetracycline. Findings from this study confirm the presence of antibiotic-resistant Enterobacteriaceae strains on organic watermelons in Nashville, TN.

Keywords: Enterobacteriaceae; antimicrobial resistance; conventional watermelon; organic watermelon.

Grants and funding

This research was funded by the TSU Cooperative Extension project (#223183) to Dilip Nandwani.