Solid-liquid transition of ultrathin lubricant film

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036110. doi: 10.1103/PhysRevE.68.036110. Epub 2003 Sep 12.

Abstract

We represent a melting of ultrathin lubricant film by friction between atomically flat surfaces as a result of action of spontaneously appearing elastic field of stress shear component caused by the external supercritical heating. The kinetics of this solid-liquid transition is described by the Maxwell-type and Voigt-Kelvin equations for viscoelastic matter as well as by the relaxation equation for temperature. We show that these equations coincide formally with the synergetic Lorenz system, where the stress acts as the order parameter, the conjugate field is reduced to the elastic shear strain, and the temperature is the control parameter. Using the adiabatic approximation we find the steady-state values of these quantities. Taking into account the deformational defect of the shear modulus, we show that lubricant melting is realized according to mechanism of the first-order transition. The critical temperature of the friction surfaces increases with growth of the characteristic value of shear viscosity and decreases with growth of the shear modulus value linearly.